数学题1/(1+2)+1/(1+2+3)+····+1/(1+2+3+n)=?

问题描述:

数学题1/(1+2)+1/(1+2+3)+····+1/(1+2+3+n)=?

1/(1+2+3.+n)=1/(n+1)n/2=2[1/n-1/(n+1)]
原式=2[1/2-1/3+1/3-1/4.+1/n-1/(n+1)]=2[1/2-1/(n+1)]=(n-1)/(n+1)