要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图21所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到
问题描述:
要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图21所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是______.
是用轴对称做对称点吧?做A的对称点A'然后连接A'B 最后得数是多少啊?
答
作A点关于x轴的对称点A1(0,-3),连接A1B,交x轴于C点(设奶站为C点),这样AC=A1C,所以 ,AC+BC=BA1,即最小距离为10