倾斜角为 ∏/4的直线交椭圆 x^2/4+y^2=1 于A B两点,则线段AB中点M的轨迹方程?
问题描述:
倾斜角为 ∏/4的直线交椭圆 x^2/4+y^2=1 于A B两点,则线段AB中点M的轨迹方程?
答
点差法设A(x1,y1)B(x2,y2),M(x,y)x1^2/4+y1^2=1x2^2/4+y2^2=1x=(x1+x2)/2,y=(y1+y2)/2kAB=(y1-y2)/(x1-x2)=tan∏/4=1前两式做差:(x1-x2)(x1+x2)/4+(y1-y2)(y1+y2)=0(x1-x2)(x1+x2)=-4(y1-y2)(y1+y2)-4(y1-y2)/(x...