x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz

问题描述:

x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz

x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz =x^2(y+z)+y^2*z+y^2*x+z^2*x+z^2*y-x^3-y^3-z^3-2xyz =x^2(y+z-x)+x(y^2+z^2-2yz)+(y^2*z+z^2*y-y^3-z^3) =x^2(y+z-x)+x(y-z)^2+[y^2(z-y)-z^2(z-y)] =x^2(y+z-x)+x...