在△ABC中,∠C=90°a,b,c,分别是∠A∠B∠C所对的边,且2b=a+c

问题描述:

在△ABC中,∠C=90°a,b,c,分别是∠A∠B∠C所对的边,且2b=a+c
求角A的正弦值.

由正弦定理,a=2RsinA b=2RsinB c=2RsinC 2sinB=sinA+sinC 2sin(90-A)=sinA+1 2cosA=sinA+1 4cosA=4(1-sinA)=sinA+2sinA+1 5sinA+2sinA-3=0 (5sinA-3)(sinA+1)=0 sinA=3/5(舍去sinA=-1) 余弦定理 2b=a+c可推导出 c=2b...