在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AB=8,BC=14,点E、F分别在边AB、CD上,EF∥AD,点P与AD在直线EF的两侧,∠EPF=90°,PE=PF,射线EP、FP与边BC分别相交于点M、N,设AE=x,MN=

问题描述:

在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AB=8,BC=14,点E、F分别在边AB、CD上,EF∥AD,点P与AD在直线EF的两侧,∠EPF=90°,PE=PF,射线EP、FP与边BC分别相交于点M、N,设AE=x,MN=y.
(1)求边AD的长;
(2)如图,当点P在梯形ABCD内部时,求y关于x的函数解析式,并写出定义域;
(3)如果MN的长为2,求梯形AEFD的面积.

(1)过D作DH⊥BC,DH与EF、BC分别相交于点G、H,∵梯形ABCD中,∠B=90°,∴DH∥AB,又∵AD∥BC,∴四边形ABHD是矩形,∵∠C=45°,∴∠CDH=45°,∴CH=DH=AB=8,∴AD=BH=BC-CH=6.(2)∵DH⊥EF,∠DFE=∠C=∠FDG=...