设函数f(x)=x2+aln(x+1)+1/2ln2(1)求单调区间(2)若函数有两个极值点x1,x2,(x11/4
问题描述:
设函数f(x)=x2+aln(x+1)+1/2ln2(1)求单调区间(2)若函数有两个极值点x1,x2,(x11/4
答
函数f(x)=x2+aln(x+1)+1/2ln2的定义域为(-1,+∞)(1)f‘(x)=2x+[a/(x+1)]=(2x^2+2x+a)/(x+1)=[2(x+1/2)^2+a-1/2]/(x+1)1,当a≥1/2时,2(x+1/2)^2+a-1/2>0,此时f‘(x)>0,f(x)在(-1,+∞)上单调递增;2,当ax2①当x2=[-1...