求与已知圆x+y-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,且过(-2,3),(1,4)的圆的方程?

问题描述:

求与已知圆x+y-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,且过(-2,3),(1,4)的圆的方程?

圆M:x+y-7y+10=0 x+(y-7/2)=9/4,圆心(0,7/2),半径3/2 圆N经过点A(-2,3),B(1,4) 直线AB斜率=(3-4)/(-2-1)=1/3,AB中点=(-1/2,7/2) AB垂直平分线斜率=-1/(1/3)=-3 ∴该垂直平分线L的方程y-7/2=-3*(x+1/2) 得出y=-3x+2 ...