已知函数f(x)满足f(x^2-3)=loga x^2/(6-x^2)(a>0,a≠1) 解不等式f(x)≥loga(2x).

问题描述:

已知函数f(x)满足f(x^2-3)=loga x^2/(6-x^2)(a>0,a≠1) 解不等式f(x)≥loga(2x).
已知函数f(x)满足f(x^2-3)=loga x^2/(6-x^2)(a>0,a≠1) 解不等式f(x)≥loga(2x).
解析式:f(x)=loga(x+3)(3-x) 奇函数
解析式:f(x)=loga(x+3)/(3-x)

设x^2-3=y,得x^2=y+3,所以f(y)=loga(y+3)/(3-y),由x^2/(6-x^2)>0,得0