求证:当n为奇数时n阶反衬矩阵A是奇异矩阵

问题描述:

求证:当n为奇数时n阶反衬矩阵A是奇异矩阵

证明:
以下A'表示A的转置,(-1)^n表示-1的n次方.
因为A是反对称矩阵,所以A'=-A.
两边取行列式得|A'|=|-A|.
由于A的行列式和A的转置的行列式相同,所以|A'|=|A|.
另一方面,|-A|=(-1)^n*|A|,由于n是奇数,所以|-A|=-|A|.
综上|A|=-|A|,则2|A|=0,所以|A|=0.