【简单的线代】这样推对不对?题目:A为n阶矩阵,n≥2,A*为A的伴随阵,证明当A满秩时,A*也满秩.答:A满秩,则有A*=|A|乘以A逆,A和A逆相似,则秩相同,均为n,而A*和A逆相似,所以A*满秩

问题描述:

【简单的线代】这样推对不对?题目:A为n阶矩阵,n≥2,A*为A的伴随阵,证明当A满秩时,A*也满秩.答:A满秩,则有A*=|A|乘以A逆,A和A逆相似,则秩相同,均为n,而A*和A逆相似,所以A*满秩

有一点小问题,相似的说法不对.应当是:
A满秩,则A可逆,|A|不等于0,则有A*=|A|A^-1,A^-1也可逆,秩为n,乘以非零倍数后秩不变,所以A*的秩为n,即满秩