(n→∞)时lim(2∧n)*(sin(x/2∧n))的极限
问题描述:
(n→∞)时lim(2∧n)*(sin(x/2∧n))的极限
x为不等于零的常数.结果是x,
答
2^n=1/(1/2^n)=x/(x/2^n)
lim(2^n)*sin(x/2^n))=lim(x/(x/2^n))*sin(x/2^n)=lim x*(sin(x/2^n)/(x/2^n))=lim x*1=x