一道高数导数的题目

问题描述:

一道高数导数的题目
设函数F(X)具有二阶连续导数,且X趋向于0时,LIM F(X)/x =0 f``(0)=4 求x趋向于0时,LIM(1+ F(X)/X)^(1/X)
答案是e^2

由x趋于0时,f(x)/x=0,知道f(0)=0,f'(0)=limf(x)/xlim(1+f(x)/x)^(x/f(x))=e所求lim(1+ f(X)/X)^(1/X)=lim(1+f(x)/x)^(x/f(x))*(f(x)/x²)=lime^(f(x)/x²)limf(x)/x²=limf'(x)/2x=limf''(x)/2=4/2=2所...为什么就能知道f(0)=0???因为limf(x)/x=0分母x趋于0,如果f(x)不趋于0,而是其他任意常数,那么f(x)/x就是无穷大,所以f(0)一定是0