已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-9/8且g(1)=-1,令f(x)=g(x+1/2)+m*lnx+9/8

问题描述:

已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-9/8且g(1)=-1,令f(x)=g(x+1/2)+m*lnx+9/8
(m属于R,x大于0)1:求g(x)的表达式;2:若存在x大于0使f(x)

1问∵g(x)为二次函数,且g(x)=g(1-x)∴g(x)对称轴为x=1/2;∴可设g(x)=A(x-1/2)^2+B又∵g(x)有最小值∴g(x)开口向上,A>0,且当x=1/2时取最小值即g(1/2)=A*0+B=-9/8∴B=-9/8;又∵g(1)=A×(1-1/2)^2-9/8=-...第1小题简单,请教第2,3小题。