Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8

问题描述:

Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8

前n项和公式为:Sn=na1+n(n-1)d/2 (即二次函数形式)
故设:Sn= (2n--3) x kn ; Tn= (4n--3) x kn (k ≠0);
所以 Sn= 2kn^2 --3kn ;Tn=4kn^2 --3kn
所以:S6= 72k --18k= 64k ,S5= 50k--15k=45k ;则 a6=1/2(a3+a9)=S6--S5 =19k 即:a3+a9=38k
T6=144k--18k=126k,T5=100k--15k=85k;则b6 =1/2(b5+b7)=1/2(b4+b8)=T6--T5=41k
即:(b5+b7)=(b4+b8)=82k
所以:a9/(b5+b7)+a3/(b4+b8)= (a3+a9)/(b5+b7) =38k/82k= 19/41= =谢谢