设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.
问题描述:
设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.
答
设 f(x) = (x- b_1) (x-b_2 ) .(x - b_n )即b_1,b_2,...,b_n 是B 特征根.则 f (A)= (A - b_1 E ) .....(A- b_n E)det(f(A)) = det (A - b_1 E ) ...det( A- b_n E )f(A)是奇异阵 ⇔ det( f(A) ) =0 ͢...