若关于x的方程x3-6x+5-a=0有3个不同实数根,求a的取值范围

问题描述:

若关于x的方程x3-6x+5-a=0有3个不同实数根,求a的取值范围

答案是,5—4倍根号2小于a小于5+4被根号2
解题思想:该方程是3次方的,要满足有三个不同的根,也就系方程曲线的两个拐点满足一正一负.因为x的3次方前的系数是1大于0,所以方程第一个拐点大于零,第二个小于零(坐标轴左边的拐点大于零).要求拐点,就先给方程的左边求导,并令其等于0,解得x=正负根号2.也就是说第一个拐点时x=负根号2,第二个时x等于根号2.将这两个x分别代入方程左边的式子,并令前者大于0,后者小于0即可.