1/2+(1/3+2/3)+(1/4+2/4+3/4)+.+(1/40+2/40+.+38/40+39/40)

问题描述:

1/2+(1/3+2/3)+(1/4+2/4+3/4)+.+(1/40+2/40+.+38/40+39/40)
1/2+(1/3+2/3)+(1/4+2/4+3/4).+(1/60+2/60+.+58/60+59/60)

1/n+2/n+3/n+.(n-1)/n=(1+2+3+.n-1)/n=(n-1)/2
1/2+1/3+2/3+1/4+2/4+3/4+……+1/60+2/60+3/60……+58/60+59/60
=1/2+(3-1)/2+(4-1)/2+.+(60-1)/2
=(1+2+3.+59)/2
=60*59/4
=885