已知m2=n+2,n2=m+2(m不等于n)求m3+2mn+n3的值
问题描述:
已知m2=n+2,n2=m+2(m不等于n)求m3+2mn+n3的值
答
m^2=n+2,①
n²=m+2,②
①-②,得,
m²-n²=n-m
(m-n)(m+n)=n-m
因为m≠n
所以m-n≠0,两边除以m-n,得,
所以m+n=-1
①*②,
(mn)²=mn+2m+2n+4
(mn)²-mn=2(m+n)+4
将m+n=-1代入,得,
(mn)²+mn-2=0
解得mn=1或-2,
所以m³+2mn+n³
=(m³+n³)+2mn
=(m+n)(m²-mn+n²)+2mn
=-(m²-mn+n²)+2mn
=-m²+mn-n²+2mn
=-m²-n²+3mn
=-(m²+2mn+n²)+5mn
=-(m+n)²+5mn
=5mn-1
当 mn=1或-2时,原式=4或-11