已知三条线a,b,c互相平行,且分别与直线l相交于A,B,C三点,求证:四条直线a,b,c,l必共面

问题描述:

已知三条线a,b,c互相平行,且分别与直线l相交于A,B,C三点,求证:四条直线a,b,c,l必共面

反证法
证明:假设A,B,C三点不共面.那么L与A和B有交点就不会与C相交,如果L与B和C有交点就不会与A有交点.依次类推,与一直条件不符.所以假设不成立,因此这四点比共面