设f(x),g(x),在[a,b]上连续,在(a,b)上可导,且f(x)g(x)的导数相等,证明是否存在常数C,使得f(x)=g(x)+C

问题描述:

设f(x),g(x),在[a,b]上连续,在(a,b)上可导,且f(x)g(x)的导数相等,证明是否存在常数C,使得f(x)=g(x)+C

要知道你的问题是拉格朗日中值定理的一个推论,首先我们要先由拉格朗日中值定理得到推论:若函数f在区间I上可导,且f的导数=0,则f在I上是一个常量函数.下面来证明你所提的问题:作辅助函数F=f-g因为在(a,b)上,f(x)与g(...