在三角形ABC中,角ABC所对的边abc,且满足csinA=acosC
问题描述:
在三角形ABC中,角ABC所对的边abc,且满足csinA=acosC
(2)求 3sinA-cos (B+ π4)的最大值,并求取得最大值时角A、B的大小.
看了过程是怎么知道A=90?
答
csinA=acosC ==> a/c = sinA/cosC由正弦定理 a/c = sinA/sinC∴ sinC =cosC ==> ∠C = π/4∴ ∠A + ∠B = 3π/4 ==> ∠B = 3π/4 - ∠A 3sinA - cos(B+π/4)= 3sinA - cos( 3π/4 - A +π/4)= 3sinA + cosA= √10*s...