求曲线y=lnx(2≤x≤6)的一条切线,使该切线与直线x=2,x=6及曲线y=lnx所围成图形面积最小.
问题描述:
求曲线y=lnx(2≤x≤6)的一条切线,使该切线与直线x=2,x=6及曲线y=lnx所围成图形面积最小.
答
y=lnx在点(u,lnu)斜率y'=1/x=1/u
切线方程 y-lnu=1/u(x-u) y=x/u-1+lnu 2该切线与直线x=2,x=6及曲线y=lnx所围成图形面积
为 x/u-1+lnu-lnx在区间[2,6]上的定积分
因为∫(x/u-1+lnu-lnx)dx
=x^2/2u-x+xlnu-∫lnxdx
=x^2/2u-x+xlnu-xlnx+∫dx
=x^2/2u-x+xlnu-xlnx+x+c
=x^2/2u+xlnu-xlnx+c
所以x/u-1+lnu-lnx在区间[2,6]上的定积分为
S=[x^2/2u+xlnu-xlnx+c]|(2,6)=16/u+4lnu-4ln2
S'=-16/u^2+4/u=(-4/u)*(4/u-1) 2当6>=u>=4,S'S减函数,最小值S=16/6+4ln6-4ln2=8/3-4ln3
当20
S增函数 最小值S=16/2+4ln2-4ln2=8
很明显当u=6时面积最小S=16/6+4ln6-4ln2=8/3-4ln3