已知函数f(x)=x2+a/x(x≠0,常数a∈R). (1)讨论函数f(x)的奇偶性,并说明理由; (2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
问题描述:
已知函数f(x)=x2+
(x≠0,常数a∈R).a x
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
答
(1)当a=0时,f(x)=x2
对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),
∴f(x)为偶函数.
当a≠0时,f(x)=x2+
(x≠0,常数a∈R),a x
取x=±1,得f(-1)+f(1)=2≠0,
f(-1)-f(1)=-2a≠0,
∴f(-1)≠-f(1),f(-1)≠f(1).
∴函数f(x)既不是奇函数也不是偶函数.
(2)设2≤x1<x2,
f(x1)-f(x2)=x21+
−x22−a x1
=a x2
[x1x2(x1+x2)-a],(x1−x2)
x1x2
要使函数f(x)在x∈[2,+∞)上为增函数,
必须f(x1)-f(x2)<0恒成立.
∵x1-x2<0,x1x2>4,
即a<x1x2(x1+x2)恒成立.
又∵x1+x2>4,∴x1x2(x1+x2)>16,
∴a的取值范围是(-∞,16].