如图,AD是Rt△ABC斜边上的高,BE平分∠B交AD于G,交AC于E,过E作EF⊥BC于F.试证明:1,AG=AE;2,四边形AEFG是菱形.
问题描述:
如图,AD是Rt△ABC斜边上的高,BE平分∠B交AD于G,交AC于E,过E作EF⊥BC于F.试证明:1,AG=AE;2,四边形AEFG是菱形.
这个题,希望能尽量规范.
答
1.∵∠C+DAC=90°,∠BAD+∠DAC=90°
∴∠C=∠BAD
∵BE平分∠ABC
∴∠ABE=∠CBE
∵∠AGE=∠BAD+∠ABE,∠AEG=∠C+∠CBE
∴∠AGE=∠AEG
∴AG=AE
2.∵BE平分∠ABC,EF⊥BC,EA⊥AB
∴EA=EF=AG
∵AD⊥BC,EF⊥BC
∴AD//EF
∵AG=EF
∴AGFE是平行四边形,
因为AG=AE
∴四边形AEFG是菱形