已知正数a,b,c满足a+b+c=3,求证(3a+1/b)+(3b+1/c)+(3c+1/a)大于等于6

问题描述:

已知正数a,b,c满足a+b+c=3,求证(3a+1/b)+(3b+1/c)+(3c+1/a)大于等于6

(3a+1/b)+(3b+1/c)+(3c+1/a)=(3a+1/a)+(3b+1/b)+(3c+1/c)≥2√3 +2√3 +2√3=6√3≥6