柯西不等式证明!
问题描述:
柯西不等式证明!
老师上课的时候讲的一个问题:等式(a+b)(1/a+n/b),其中n为整数,不管n取多少,用柯西不等式都求得最小值为4,很费解,求高人解释!
答
柯西不等式(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2 等号成立条件:ad=bc证明(a^2+b^2)(c^2+d^2) (a,b,c,d∈R) =a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2 =a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2...