∫X(lnx)^2 dx
问题描述:
∫X(lnx)^2 dx
1/2*x^2(lnx)^2-1/2*x^2*lnx+1/4*x^2+c
算到后面答案就是不对,有人知道吗?
答
用分步积分法.∫X(lnx)^2 dx = (1/2)* x^2 * (lnx)^2 - ∫x *lnx dx = (1/2)* x^2 * (lnx)^2 - [ (1/2)* x^2 * lnx - ∫(1/2)*x dx ] =(1/2)* x^2 * (lnx)^2 - [ (1/2)* x^2 * lnx - 1/4 * x^2 ] =(1/2)* x^2 * (lnx...