如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(0,2). (1)求该抛物线的解析式; (2)是否在x轴上存在点P使△PAB为等腰三角形?若存在,
问题描述:
如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(0,2).
(1)求该抛物线的解析式;
(2)是否在x轴上存在点P使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点P是x轴上任意一点,则当PA-PB最大时,求点P的坐标.
答
(1)∵抛物线的顶点坐标为A(-2,3),∴可设抛物线的解析式为y=a(x+2)2+3.
由题意得:a(0+2)2+3=2,解得:a=-
.1 4
∴物线的解析式为y=-
(x+2)2+3,即y=-1 4
x2-x+2.1 4
(2)设存在符合条件的点P,其坐标为(p,0),则
PA2=(-2-p)2+32,PB2=p2+22,AB2=(3-2)2+22=5
当PA=PB时,(-2-p)2+32=p2+22,解得:p=-
;9 4
当PA=AB时,(-2-p)2+32=5,方程无实数解;
当PB=AB时,p2+22=5,解得p=±1.
∴x轴上存在符合条件的点P,其坐标为(-
,0)或(-1,0)或(1,0).9 4
(3)∵PA-PB≤AB,
∴当A、B、P三点共线时,可得PA-PB的最大值,这个最大值等于AB,此时点P是直线AB与x轴的交点.
设直线AB的解析式为y=kx+b,则:
,解得
b=2 -2k+b=3
.
k=-
1 2 b=2
∴直线AB的解析式为y=-
x+2,1 2
当y=-
x+2=0时,解得x=4.1 2
∴当PA-PB最大时,点P的坐标是(4,0).