y=x2/(x2-4x+1)x∈[1/3,1] 求值域

问题描述:

y=x2/(x2-4x+1)x∈[1/3,1] 求值域

y=x²/(x²-4x+1)
y=1/(1-4/x+1/x²)
y=1/[(1/x-2)²-4+1]
y=1/[(1/x-2)²-3]
当x=1/3或x=1时,函数有最小值y=-1/2
当x=2/3时,函数有最大值值y=-4/3