已知斜率为一得直线L过椭圆x2/4+Y2=1的右焦点F2 若L与椭圆相交于A,B两点,F1为椭圆左焦点求,三角形F1AB的面
问题描述:
已知斜率为一得直线L过椭圆x2/4+Y2=1的右焦点F2 若L与椭圆相交于A,B两点,F1为椭圆左焦点求,三角形F1AB的面
答
椭圆x^2/4+Y2=1的右焦点F2 为(√3,0),F1坐标为(-√3,0);依题意,直线的方程应为:y=(x-√3),代入椭圆方程得:x^2/4+(x-√3)2=1,5x^2-8√3x+8=0,则方程有两根分别设为x1,x2x1+x2=8√3/5,x1*x2=8/5|x1-x2|=√[...