设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
问题描述:
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
答
两边同时减5i
得A^2-2A-3i=-5i
(a-3i)(a+i)=-5i
(-1/5(a+i))(a-3i)=i
所以a-3i的逆矩阵是-1/5(a+i)
因为有逆矩阵所以可逆