如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问: (1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上
问题描述:
如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:
(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;
(2)如果AB=AC=5cm,sinA=
,那么圆心O在AB的什么位置时,⊙O与AC相切? 3 5
答
(1)结论成立.理由如下:
如图,连接OD;
∵OD=OB,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ACB=∠ODB,
∴OD∥AC;
又∵DE⊥AC,
∴DE⊥OD,即DE是⊙O的切线.
(2)当圆心O在AB上距B点为3x=
时,⊙O与AC相切.15 8
如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC;
在RT△AOF中,sinA=OF:AO=3:5;
设OF=3x,AO=5x,则OB=OG=OF=3x,AG=2x,
∴8x=AB=5,
∴x=
,此时OB=3x=5 8
时,15 8
即当圆心O在AB上距B点为3x=
时,⊙O与AC相切.15 8