已知A、B、C为△ABC的三个内角,a=(sinB+cosB,cosC),b=(sinC,sinB-cosB). (1)若a•b=0,求角A; (2)若a•b=-1/5,求tan2A.
问题描述:
已知A、B、C为△ABC的三个内角,
=(sinB+cosB,cosC),a
=(sinC,sinB-cosB).b
(1)若
•a
=0,求角A;b
(2)若
•a
=-b
,求tan2A. 1 5
答
(1)由已知
•a
=0得(sinB+cosB)sinC+cosC(sinB-cosB)=0,b
化简得sin(B+C)-cos(B+C)=0,
即sinA+cosA=0,∴tanA=-1.
∵A∈(0,π),∴A=
π.3 4
(2)∵
•a
=-b
,∴sin(B+C)-cos(B+C)=-1,1 5
∴sinA+cosA=-
.①1 5
平方得2sinAcosA=-
.24 25
∵-
<0,∴A∈(24 25
,π).π 2
∴sinA-cosA=
=
1-2sinAcosA
.②7 5
联立①②得,sinA=
,cosA=-3 5
.4 5
∴tanA=
=-sinA cosA
.3 4
∴tan2A=
=-2tanA 1-tan2A
.24 7