若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(x)的解析式; (2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
问题描述:
若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
答
(1)由题意可知,f(0)=1,解得,c=1,
由f(x+1)-f(x)=2x.可知,[a(x+1)2+b(x+1)+1]-(ax2+bx+1)=2x,
化简得,2ax+a+b=2x,
∴
,
2a=2 a+b=0
∴a=1,b=-1.
∴f(x)=x2-x+1;
(2)不等式f(x)>2x+m,可化简为x2-x+1>2x+m,
即x2-3x+1-m>0在区间[-1,1]上恒成立,
设g(x)=x2-3x+1-m,则其对称轴为x=
,3 2
∴g(x)在[-1,1]上是单调递减函数.
因此只需g(x)的最小值大于零即可,
g(x)min=g(1),
∴g(1)>0,
即1-3+1-m>0,解得,m<-1,
∴实数m的取值范围是m<-1.