求证一道线性代数证明题
问题描述:
求证一道线性代数证明题
设A是m*n矩阵且行满秩,B是n*(n-m) 且列满秩,且AB=O求证若η是齐次线性方程组AX=0的解,则存在唯一的ζ使Bζ=η
答
由已知,r(A)=m
所以 AX=0 的基础解系含 n-m 个向量.
因为 AB=0
所以B的列向量都是AX=0的解
又因为B列满秩,r(B)=n-m
所以B的列向量构成AX=0的基础解系
所以AX=0的解η可由B的列向量组唯一线性表示
即BX=η有唯一解ζ.