设OM=(1,12),ON=(0,1)为坐标原点,动点p(x,y)满足0≤OP•OM≤1,,则z=y-x的最大值是(  ) A.-1 B.1 C.-2 D.32

问题描述:

OM
=(1,
1
2
),
ON
=(0,1)
为坐标原点,动点p(x,y)满足0≤
OP
OM≤1
,,则z=y-x的最大值是(  )
A. -1
B. 1
C. -2
D.
3
2

OP
OM
=x+
1
2
y,
OP
ON
=y

据题意得
0≤x+
1
2
y≤1
0≤y≤1

画出可行域
将z=y-x变形为y=x+z画出相应的直线,将直线平移至可行域中的点A(1,0)时,纵截距最小,z最小
将(1,0)代入z=y-x得到z的最小值-1
故选A.