当多项式m的平方+m-1=0 求值:m的3次方+2m的平方+2012
问题描述:
当多项式m的平方+m-1=0 求值:m的3次方+2m的平方+2012
答
2013
答
∵m^2+m-1=0,∴m^3+m^2-m=0,两式相加,得:m^3+2m^2-1=0,
∴m^3+2m+2012=2013。
答
∵m²+m-1=0
∴m²=1-m
∴m³+2m²+2012
=m³+2m²+2012
=m(1-m)+2m²+2012
=m²+m+2012
=1-m+m+2012
=2013
答
m² + m - 1 = 0
m² + m = 1
m³ + 2m² + 2012
= (m³ + m²) + m² + 2012
= m(m² + m) + m² + 2012
= m + m² + 2012
= 1 + 2012
= 2013