如图抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,D是抛物线的顶点,已知CD=2; (1)求抛物线的解析式; (2)在抛物线上共有三个点到直线BC的距离为m,求m的值; (3)将(1)中

问题描述:

如图抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,D是抛物线的顶点,已知CD=

2


(1)求抛物线的解析式;
(2)在抛物线上共有三个点到直线BC的距离为m,求m的值;
(3)将(1)中的抛物线向上平移t(t>0)个单位,与直线CD交于点G、H,设平移后的抛物线的顶点为D1,与y轴的交点为C1,是否存在实数t,使得DH⊥HD1,若存在,求出t的值;若不存在,说明理由.

(1)∵D(1,4),CD=2,∴C(0,3),∴a=-1,∴y=-(x-1)2+4,即y=-x2+2x+3;(2)∵B(3,0)、C(0,3),∴直线BC:y=-x+3,将直线BC向上平移b个单位得直线MN:y=-x+3+b,则第三个点一定是直线MN与抛物线的唯...