△ABC中,若b^2+c^2-a^2=根号2bc,且sinB/cosC>根号2,那么角C的范围为
问题描述:
△ABC中,若b^2+c^2-a^2=根号2bc,且sinB/cosC>根号2,那么角C的范围为
答
b^2+c^2-a^2=√2bc,则cosA=(b^2+c^2-a^2)/(2bc)=√2/2、A=π/4.B+C=3π/4、B=3π/4-C.sinB/cosC=sin(3π/4-C)/cosC=[(√2/2)cosC+(√2/2)sinC]/cosC=√2/2+(√2/2)tanC>√2.则tanC>1,所以C的取值范围是(π/4,π/2)....