在三角形ABC中,三内角ABC的对边为abc若sina/sinB=根号2/1,C2=B2+根号2bc求A B C

问题描述:

在三角形ABC中,三内角ABC的对边为abc若sina/sinB=根号2/1,C2=B2+根号2bc求A B C

根据正弦定理:a/sinA =b/sinB → sinA /sinB=a/b 由题意可得:a/b=√2/1 → a=√2b 根据余弦定理:cosA=(b^2+c^2-a^2)/2bc cosA=[b^2+(b^2+√2bc)-2b^2]/2bc =√2bc/2bc = √2/2 ∠A=45° sin45°/sinB=√2/1 ,sin...