已知直线l1:y=4x与点P(6,4),在l1上求一点Q,使得过P、Q的直线l2与l1和x轴在第一象限内围成的三角形面积最小

问题描述:

已知直线l1:y=4x与点P(6,4),在l1上求一点Q,使得过P、Q的直线l2与l1和x轴在第一象限内围成的三角形面积最小
求坐标Q及直线l2

Q(2,8)l2:y=-x+10
设点Q坐标,然后表达PQ方程,然后表达出PQ在X上的交点,然后用表达出面积,然后一次求导,就可以算出来了,要是没算错的话应该是那个答案