limn→∞[1/1•4+1/4•7+1/7•10+…+1/(3n−2)(3n+1)]=_.

问题描述:

lim
n→∞
[
1
1•4
+
1
4•7
+
1
7•10
+…+
1
(3n−2)(3n+1)
]=______.

lim
n→∞
[
1
1•4
+
1
4•7
+
1
7•10
+…+
1
(3n−2)(3n+1)
]
=
lim
n→∞
1
3
[(1−
1
4
)+(
1
4
1
7
)+…+(
1
3n−2
1
3n+1
)

=
lim
n→∞
1
3
(1−
1
3n+1
)

=
lim
n→∞
1
3
3n
3n+1
=
1
3

故答案为
1
3