在三角形ABC中,角ABC的对边分别为a b c,已知a=1,向量m=(sinA,cos((B+C)/2)),n=(sinA,-2cos((B+C)/2))当mn取到最大值时,求(1)求角A的大小(2)求三角形ABC周长的取值范围

问题描述:

在三角形ABC中,角ABC的对边分别为a b c,已知a=1,向量m=(sinA,cos((B+C)/2)),n=(sinA,-2cos((B+C)/2))
当mn取到最大值时,求(1)求角A的大小(2)求三角形ABC周长的取值范围

我第一次回答问题!(1)由题意知:mn=(sinA)^2-2*[cos((B+C)/2)))]^2=1-(cosA)^2-2*[cos((pi-A)/2)))]^2=1-(cosA)^2+cosA-1=-(cosA-1/2)^2+1/4显然,当cosA=1/2时,mn最大等于1/4.由于A属于【0,pi】,所以A等于60度.(2...