数列{an}中,a1=1,Sn表示前n项的和,且Sn,Sn+1,2S1成等差数列
问题描述:
数列{an}中,a1=1,Sn表示前n项的和,且Sn,Sn+1,2S1成等差数列
已知数列{an}中,a1=1,且Sn,Sn+1,2S1成等差数列,求此数列的前n项和公式Sn.
答
Sn,S(n+1),2S1成等差数列
Sn + 2S1= 2S(n+1)
Sn + 2 = 2S(n+1)
(S(n+1)-2) = (1/2)(Sn -2)
= (1/2)^n .(S1-2)
= -(1/2)^n
Sn -2 = -(1/2)^(n-1)
Sn = 2-(1/2)^(n-1)答案是Sn = 2- 1/(2^(n-1)),第4步没看懂Sn + 2S1= 2S(n+1)Sn + 2 = 2S(n+1)(S(n+1)-2) = (1/2)(Sn -2){Sn -2} 是等比数列, q=1/2(S(n+1)-2) = (1/2)(Sn -2) = (1/2)^n .(S1-2) = -(1/2)^n (S1=a1=1)Sn -2 = -(1/2)^(n-1) (代入 n'= n+1 ) Sn = 2-(1/2)^(n-1)(两边-2)本人愚笨= (1/2)(Sn -2) = (1/2)^n .(S1-2)这步不懂(S(n+1)-2) = (1/2)(Sn -2)(S(n+1)-2) /(Sn -2) = 1/2令bn = Sn -2 bn是等比数列, q=1/2(S(n+1)-2) /(Sn -2) = 1/2b(n+1) /bn =1/2b(n+1)/b1 =(1/2)^nb(n+1) = (1/2)^n . b1S(n+1) -2 = (1/2)^n . (S1-2)