求函数Y=sin2x+2sinxcosx+2√3cos2x的最小值,并写出使函数y取得最小值的x的集合
问题描述:
求函数Y=sin2x+2sinxcosx+2√3cos2x的最小值,并写出使函数y取得最小值的x的集合
急!在线等
答
因2sinxcosx=sin2x
则Y=sin2x+2sinxcosx+2√3cos2x
=sin2x+sin2x+2√3cos2x
= 2sin2x+2√3cos2x
=2(sin2x+√3cos2x)
=4(1/2 sin2x +√3/2 cos2x)
=4(sin2x cosπ/3 +cos2x sinπ/3)
=4sin(2x +π/3)
所以函数Y的最小值为-4.
因当2x +π/3=3π/2+2kπ( k是整数)时,函数Y取得最小值-4,
即 x=(3π/2-π/3)/2+kπ,
x=7π/12+kπ ,
所以使函数取得最小值的x的集合为{x|x=7π/12+kπ ,k是整数}.