Sn=(1+1)/2+(2+1)/2^2+(3+1)/2^3+``````+(n+1)/2^n=?

问题描述:

Sn=(1+1)/2+(2+1)/2^2+(3+1)/2^3+``````+(n+1)/2^n=?

典型的等差数列和等比数列结合题.Sn=2/2+3/2^2+.+(n+1)/2^nSn/2= 2/2^2+.+n/2^n +(n+1)/2^(n+1)相减得Sn/2=1+[1/2^2+1/2^3+...+1/2^n)]-(n+1)/2^(n+1)=1-[1/2-1/2^n]-(n+1)/2^(n+1)=1/2+(1-n)/2^(n+1)所以Sn=1+(1-n...