设A、B、C、D为平面内四点,且向量AB=向量CD,A(3,1),B(-2,2),C(-1,4)
问题描述:
设A、B、C、D为平面内四点,且向量AB=向量CD,A(3,1),B(-2,2),C(-1,4)
问:若点P满足向量OP=OA+ t BD(t∈R),求点P的轨迹
答
AB = CDA(3,1),B(-2,2),C(-1,4)let P (x,y)OP = OA+ tBD(x,y) = (3,1) + t(BC+CD)= (3,1) + t(BC+AB)= (3,1) + t((1,2) + (-5,1))= (3-4t,1+3t)x = 3-4t (1)y = 1+3t (2)3(1)+4(2)3x+4y = 9+43x+4y = 13 P的轨迹 :3x...