三角形ABC,AB=AC,D是BC延长线上一点,DE平行AC交BA的延长线于E,DF平行于AB交AC的延长线于F,证AB=DE-DF
问题描述:
三角形ABC,AB=AC,D是BC延长线上一点,DE平行AC交BA的延长线于E,DF平行于AB交AC的延长线于F,证AB=DE-DF
答
因为 AB=AC,所以 角B = 角ACB因为 DE平行AC,所以 角EDC = 角ACB所以 角B = 角EDC所以 EB = DE因为 DE平行AC 并且 DF平行于AB所以 四边形EDFA是并行四边形所以 AE = DF因为 AB = EB - AE(依据上面得到的结论)所以 A...