函数f(x)=[(1/√3)sin2x]-cos2x取得最大值时,x=_________.
问题描述:
函数f(x)=[(1/√3)sin2x]-cos2x取得最大值时,x=_________.
答
f(x)=2/√3*(sin2x*1/2-cos2x*√3/2)
=2/√3*(sin2xcosπ/3-cos2xsinπ/3)
=2/√3*sin(2x-π/3)
最大则sin(2x-π/3)=1
2x-π/3=2kπ+π/2
x=kπ+5π/12